login
A294280
a(n) = least positive k such that omega(n+k) > max(omega(n), omega(k)), where omega(m) = A001221(m), the number of distinct primes dividing m.
1
1, 4, 3, 2, 1, 24, 3, 2, 1, 20, 1, 18, 1, 16, 15, 2, 1, 12, 1, 10, 9, 8, 1, 6, 1, 4, 1, 2, 1, 180, 2, 1, 9, 8, 7, 6, 1, 4, 3, 2, 1, 168, 1, 16, 15, 14, 1, 12, 1, 10, 9, 8, 1, 6, 5, 4, 3, 2, 1, 150, 1, 4, 3, 1, 1, 144, 1, 2, 1, 140, 1, 6, 1, 4, 3, 2, 1, 132, 1
OFFSET
1,2
COMMENTS
For any n > 0, a(n) <= n * (A053669(n) - 1).
Apparently, a(n) = n * (A053669(n) - 1) iff n belongs to A077011.
a(n) = 1 iff omega(n) < omega(n+1).
a(p) = 1 for any prime power p not in A006549.
The scatterplot of the sequence shows segments of slope -1, corresponding to frequent values of n+a(n); these segments correspond to the strands in the plot of the ordinal transform of n+a(n) (see plots in Links section).
EXAMPLE
For n=2:
- omega(2+1) = 1 = omega(2),
- omega(2+2) = 1 = omega(2),
- omega(2+3) = 1 = omega(2),
- omega(2+4) = 2 > max(omega(2), omega(4)) = 1,
- hence, a(2) = 4.
PROG
(PARI) a(n) = my (on=omega(n)); for (k=1, oo, if (omega(n+k) > max(on, omega(k)), return (k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Oct 26 2017
STATUS
approved