login
A032349
Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).
25
1, 4, 24, 172, 1360, 11444, 100520, 911068, 8457504, 80006116, 768464312, 7474561164, 73473471344, 728745517972, 7284188537672, 73301177482172, 742009157612608, 7550599410874820, 77193497566719320, 792498588659426924
OFFSET
1,2
COMMENTS
a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n}”, where n union and n-1 intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n} are sets. - Alexander Burstein, Nov 22 2023
LINKS
Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f.: z*A^2, where A is the g.f. of A027307.
a(n) = 2*Sum_{i=0..n-1} (2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!). - Vladimir Kruchinin, Oct 18 2011
D-finite with recurrence: n*(2*n-1)*a(n) = (28*n^2-65*n+36)*a(n-1) - (64*n^2-323*n+408)*a(n-2) - 3*(n-4)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(45*sqrt(5)-100)*((11+5*sqrt(5))/2)^n/(5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f. A(x) satisfies: A(x) = 1 + x * ( A(x) + sqrt(A(x)) )^2. - Paul D. Hanna, Jun 11 2016
From Peter Bala, May 07 2023: (Start)
n*(2*n-1)*(5*n-9)*a(n) = 2*(55*n^3-209*n^2+255*n-99)*a(n-1) + (n-3)*(2*n-3)*(5*n-4)*a(n-2) with a(1) = 1 and a(2) = 4.
G.f.: A(x) = series reversion of x*(1 - x)^2/(1 + x)^2. (End)
MATHEMATICA
RecurrenceTable[{n*(2*n-1)*a[n] == (28*n^2-65*n+36)*a[n-1] - (64*n^2-323*n+408)*a[n-2] - 3*(n-4)*(2*n-5)*a[n-3], a[1]==1, a[2]==4, a[3]==24}, a, {n, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
PROG
(Maxima)
a(n):=2*sum((2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!), i, 0, n-1); \\ Vladimir Kruchinin, Oct 18 2011
(PARI) vector(30, n, 2*sum(k=0, n-1, (2*n+k-1)!/(k!*(n-k-1)!*(n+k+1)!))) \\ Altug Alkan, Oct 06 2015
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + x*(A + sqrt(A +x*O(x^n)))^2); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 11 2016
CROSSREFS
Convolution of A027307 with itself.
Cf. A060628 diagonal(-6).
Sequence in context: A366980 A369471 A347651 * A215709 A103334 A156017
KEYWORD
nonn,easy
STATUS
approved