login
A106344
Triangle read by rows: T(n,k) = binomial(k,n-k) mod 2.
15
1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
OFFSET
0,1
COMMENTS
A skew version of Sierpinski’s triangle A047999. - Johannes W. Meijer, Jun 05 2011
Row sums are A002487(n+1). Diagonal sums are A106345. Inverse is A106346.
Triangle formed by reading T triangle mod 2 with T := A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. - Philippe Deléham, Dec 18 2008
LINKS
Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (1.6) p. 2.
EXAMPLE
Triangle begins
1;
0, 1;
0, 1, 1;
0, 0, 0, 1;
0, 0, 1, 1, 1;
0, 0, 0, 1, 0, 1;
MAPLE
seq(seq(`mod`(binomial(k, n-k), 2), k = 0..n), n = 0..15); # G. C. Greubel, Feb 07 2020
MATHEMATICA
Table[Mod[Binomial[k, n-k], 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 18 2017 *)
PROG
(PARI) T(n, k) = binomial(k, n-k)%2;
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 07 2020
(Magma) [ Binomial(k, n-k) mod 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 07 2020
(Sage) [[ mod(binomial(k, n-k), 2) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Feb 07 2020
(GAP) Flat(List([0..15], n-> List([0..n], k-> (Binomial(k, n-k) mod 2) ))); # G. C. Greubel, Feb 07 2020
CROSSREFS
Cf. A106345 (diagonal sums), A106346 (inverse).
Sequence in context: A321016 A077051 A115955 * A106346 A296212 A189921
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 29 2005
STATUS
approved