login
A130167
Another version of triangle in A127743.
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 5, 3, 1, 0, 22, 16, 9, 4, 1, 0, 92, 60, 31, 14, 5, 1, 0, 426, 252, 120, 52, 20, 6, 1, 0, 2146, 1160, 510, 209, 80, 27, 7, 1, 0, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 0, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,1,2,1,3,1,4,1,5,1,6,1,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
A154380*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 13 2009
FORMULA
Sum_{k=0..n} T(n,k) = A000110(n).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 6, 5, 3, 1;
0, 22, 16, 9, 4, 1;
0, 92, 60, 31, 14, 5, 1; ...
CROSSREFS
Cf. A074664.
Sequence in context: A110314 A370890 A152882 * A084938 A135898 A131182
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Aug 03 2007
STATUS
approved