login
A102676
Number of digits >= 5 in the decimal representations of all integers from 0 to n.
2
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 45, 47, 49, 51, 53, 55, 56, 57, 58, 59, 60, 62
OFFSET
0,7
COMMENTS
The total number of digits >= 5 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012
REFERENCES
Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.
LINKS
FORMULA
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/2)*(2n + 2 - floor(n/10^j + 1/2)*10^j - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j))*10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102675(n) + (1/2)*Sum_{j=1..m+1} (floor(n/10^j)*10^j - (floor(n/10^j + 1/2)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 5*m*10^(m-1).
(This is the total number of digits >= 5 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1-x^10^(j+1)).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} x^(5*10^j)/(1+x^(5*10^j)). (End)
MAPLE
p:=proc(n) local b, ct, j: b:=convert(n, base, 10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i), i=0..n), n=0..83); # Emeric Deutsch, Feb 23 2005
MATHEMATICA
Accumulate[Table[Total[Take[DigitCount[n], {5, 9}]], {n, 0, 80}]] (* Harvey P. Dale, Apr 27 2015 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Feb 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
STATUS
approved