login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102307
a(n) = Fibonacci(2n+1) * binomial(2n,n).
1
1, 4, 30, 260, 2380, 22428, 215292, 2093520, 20553390, 203280220, 2022339176, 20215564824, 202879303900, 2042865050800, 20629119101400, 208829908532880, 2118554718825420, 21533269718832300, 219235457827640100, 2235446059461106800, 22824647678376163620, 233331794241184490280
OFFSET
0,2
COMMENTS
Central column of triangle A016095.
a(n) is the number of ways to tile a strip of length 2n with squares labeled 0 or 1, and dominoes labeled 00, 01, 10, or 11, where there are in total n 0's and n 1's in the tiling. - Greg Dresden and Yiming Tan, Aug 15 2020
FORMULA
a(n) = Fibonacci(2n+1) * binomial(2n,n) = A000045(2n+1) * A000984(n). - Philippe Deléham, Oct 14 2006
a(n) = A016095(n,n).
Sum_{n>=0} a(n)/16^n = 2*sqrt(10+2*sqrt(5))/5. - Amiram Eldar, May 06 2023
G.f.: sqrt(3-8*x+2*sqrt(1-12*x+16*x^2))/(sqrt(5)*sqrt(1-12*x+16*x^2)). - Vladimir Kruchinin, Apr 30 2024
EXAMPLE
a(0) = F(1)*C(0,0) = 1*1 = 1;
a(1) = F(3)*C(2,1) = 2*2 = 4;
a(2) = F(5)*C(4,2) = 5*6 = 30;
a(3) = F(7)*C(6,3) = 13*20 = 260; ...
MATHEMATICA
Table[Fibonacci[2n+1]Binomial[2n, n], {n, 0, 20}] (* Harvey P. Dale, Aug 03 2016 *)
PROG
(PARI) a(n)=fibonacci(2*n+1)*binomial(2*n, n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 03 2005
STATUS
approved