Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Apr 30 2024 02:11:37
%S 1,4,30,260,2380,22428,215292,2093520,20553390,203280220,2022339176,
%T 20215564824,202879303900,2042865050800,20629119101400,
%U 208829908532880,2118554718825420,21533269718832300,219235457827640100,2235446059461106800,22824647678376163620,233331794241184490280
%N a(n) = Fibonacci(2n+1) * binomial(2n,n).
%C Central column of triangle A016095.
%C a(n) is the number of ways to tile a strip of length 2n with squares labeled 0 or 1, and dominoes labeled 00, 01, 10, or 11, where there are in total n 0's and n 1's in the tiling. - _Greg Dresden_ and _Yiming Tan_, Aug 15 2020
%F a(n) = Fibonacci(2n+1) * binomial(2n,n) = A000045(2n+1) * A000984(n). - _Philippe Deléham_, Oct 14 2006
%F a(n) = A016095(n,n).
%F Sum_{n>=0} a(n)/16^n = 2*sqrt(10+2*sqrt(5))/5. - _Amiram Eldar_, May 06 2023
%F G.f.: sqrt(3-8*x+2*sqrt(1-12*x+16*x^2))/(sqrt(5)*sqrt(1-12*x+16*x^2)). - _Vladimir Kruchinin_, Apr 30 2024
%e a(0) = F(1)*C(0,0) = 1*1 = 1;
%e a(1) = F(3)*C(2,1) = 2*2 = 4;
%e a(2) = F(5)*C(4,2) = 5*6 = 30;
%e a(3) = F(7)*C(6,3) = 13*20 = 260; ...
%t Table[Fibonacci[2n+1]Binomial[2n,n],{n,0,20}] (* _Harvey P. Dale_, Aug 03 2016 *)
%o (PARI) a(n)=fibonacci(2*n+1)*binomial(2*n,n)
%Y Cf. A000045, A000984, A016095.
%K nonn
%O 0,2
%A _Ralf Stephan_, Jan 03 2005