login
A100451
a(n) = 0 for n <= 2; for n >= 3, a(n) = (n-2)*floor((n^2-2)/(n-2)).
4
0, 0, 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597, 2700
OFFSET
1,3
FORMULA
a(n) = (n-2)*(n+2), n >= 5. - R. J. Mathar, Aug 17 2009
a(n) = A028347(n), n >= 5. - R. J. Mathar, Jul 31 2010
MATHEMATICA
Join[{0, 0, 7, 14}, Table[(n-2)(n+2), {n, 5, 60}]] (* or *) Join[{0, 0, 7, 14}, LinearRecurrence[{3, -3, 1}, {21, 32, 45}, 60]] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(Magma) [0, 0] cat [(n-2)*Floor((n^2-2)/(n-2)): n in [3..30]]; // Vincenzo Librandi, Oct 04 2011
(PARI) a(n)=if(n<3, 0, (n^2-2)\(n-2)*(n-2)) \\ Charles R Greathouse IV, Oct 16 2015
(SageMath)
def A100451(n):
return 7 * (n - 2) * ((n - 1) // 2) if n < 5 else (n - 2) * (n + 2)
print([A100451(n) for n in range(1, 61)]) # G. C. Greubel, Apr 07 2023
CROSSREFS
Third row of array in A100452.
Cf. A028347.
Sequence in context: A033004 A189931 A164005 * A028555 A061823 A018890
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 22 2004
EXTENSIONS
Factor in definition corrected by R. J. Mathar, Aug 17 2009
STATUS
approved