login
A018890
Numbers whose smallest expression as a sum of positive cubes requires exactly 7 cubes.
6
7, 14, 21, 42, 47, 49, 61, 77, 85, 87, 103, 106, 111, 112, 113, 122, 140, 148, 159, 166, 174, 178, 185, 204, 211, 223, 229, 230, 237, 276, 292, 295, 300, 302, 311, 327, 329, 337, 340, 356, 363, 390, 393, 401, 412, 419, 427, 438, 446, 453, 465, 491, 510, 518, 553, 616
OFFSET
1,1
COMMENTS
It is conjectured that a(121)=8042 is the last term - Jud McCranie
An unpublished result of Deshouillers-Hennecart-Landreau, combined with Lemma 3 from Bertault, Ramaré, & Zimmermann implies that if there are any terms beyond a(121) = 8042, they are greater than 1.62 * 10^34. - Charles R Greathouse IV, Jan 23 2014
REFERENCES
J. Roberts, Lure of the Integers, entry 239.
LINKS
F. Bertault, O. Ramaré, and P. Zimmermann, On sums of seven cubes, Math. Comp. 68 (1999), pp. 1303-1310.
Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Waring's Problem
MATHEMATICA
Select[Range[700], (pr = PowersRepresentations[#, 7, 3]; pr != {} && Count[pr, r_/; (Times @@ r) == 0] == 0)&] (* Jean-François Alcover, Jul 26 2011 *)
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Anonymous
STATUS
approved