OFFSET
0,1
COMMENTS
a(n) = (-1)^n*A009116(n+3) + A100216(n) + A038503(n+1), where A009116, A100216 and A038503 can be generated by the operators jes, les and tes of the Floretion algebra, which is a product factor space Q x Q /{(1,1), (-1,-1)}.
Binomial transform of the sequence 4,5,0,-1 (repeated with period length 4). - R. J. Mathar, Apr 18 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Creighton Dement, Floretion Online Multiplier.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4).
FORMULA
EXAMPLE
a(2) = 14 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 = 1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e and the sum of these coefficients is 1 + 1 + 1 + 1 + 3 + 2 + 2 + 1 + 1 + 1 = 14 (see comment).
MATHEMATICA
LinearRecurrence[{4, -6, 4}, {4, 9, 14}, 40] (* Vincenzo Librandi, Jun 25 2012 *)
PROG
(Magma) I:=[4, 9, 14]; [n le 3 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jun 25 2012
(SageMath)
A099087=BinaryRecurrenceSequence(2, -2, 1, 2)
[A100215(n) for n in range(41)] # G. C. Greubel, Mar 29 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Nov 11 2004
EXTENSIONS
Definition replaced with the more precise g.f. by R. J. Mathar, Nov 17 2010
STATUS
approved