login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100213
Expansion of g.f.: x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-2*x) * (1-2*x^2) * (1-2*x+2*x^2) * (1+2*x^2)).
4
4, 9, 14, 18, 32, 64, 128, 256, 544, 1104, 2144, 4128, 8192, 16384, 32768, 65536, 131584, 263424, 525824, 1049088, 2097152, 4194304, 8388608, 16777216, 33562624, 67129344, 134242304, 268443648, 536870912, 1073741824, 2147483648, 4294967296, 8590065664
OFFSET
1,1
COMMENTS
The sequence can be created applying the pos operator (which sums over the positive coefficients) to the n-th power of the Floretion element (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e).
FORMULA
a(n) = A100215(n) - A100212(n).
a(n) = (-1)^n*A009116(n+3) + A100216 + A038503(n+1).
Equation above in Floretian Algebra operator speak: (pos) + (neg) = (ves) = (jes) + (les) + (tes)
a(n-1) = A000079(n+1) + (5*A077957(n) + 6*A077957(n-1))/4 + A009545(n)/2 + A009545(n+1) + A077966(n-1) - A077966(n)/4. - R. J. Mathar, May 07 2008
From G. C. Greubel, Mar 29 2024: (Start)
a(n) = (1/16)*( 2^(n+4) - 2*((1+5*i)*(1+i)^n + (1-5*i)*(1-i)^n) + (1 - (-1)^n)*2^((n+1)/2)*(5+i^(n+1)) + (1+(-1)^n)*2^(1+n/2)*(3-2*i^n) ).
a(2*n-1) = 2^(n-3)*( 2^(n+2) + 5 + (-1)^n - 6*cos(n*Pi/2) + 4*sin(n*Pi/2) ), for n >= 1.
a(2*n) = 2^(n-2)*( 2^(n+2) + 3 - 2*(-1)^n - cos(n*Pi/2) + 5*sin(n*Pi/2) ), n >= 1.
E.g.f.: -1 + exp(2*x) + (1/8)*(6*cosh(sqrt(2)*x) + 5*sqrt(2)* sinh(sqrt(2)*x) - (4*cos(sqrt(2)*x) + sqrt(2)*sin(sqrt(2)*x)) - 2*exp(x)*(cos(x) - 5*sin(x)) ). (End)
EXAMPLE
a(5) = 32 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^5 = - 2 'j - 2 'k - 2 j' - 2 k' + 6 'ii' + 10 'jj' + 10 'kk' + 6 e,
and the sum of all positive coefficients is 6+10+10+6 = 32.
MATHEMATICA
Rest[CoefficientList[Series[x(4-7x+2x^2-8x^4+16x^5-16x^6)/((1-2x)(1-2x^2)(1-2x+2x^2)(1+2x^2)), {x, 0, 40}], x]] (* or *) LinearRecurrence[{4, -6, 4, 4, -16, 24, -16}, {4, 9, 14, 18, 32, 64, 128}, 40] (* Harvey P. Dale, Aug 23 2015 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-4*x+6*x^2-4*x^3)*(1-4*x^4)) )); // G. C. Greubel, Mar 29 2024
(Sage)
def A100213_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-4*x+6*x^2-4*x^3)*(1-4*x^4)) ).list()
a=A100213_list(51); a[1:] # G. C. Greubel, Mar 29 2024
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Nov 11 2004
EXTENSIONS
Replaced definition with generating function, changed offset to 1. - R. J. Mathar, Mar 12 2010
STATUS
approved