login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092588
Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.
7
7, 327, 463, 497, 617, 691, 751, 1207, 1633, 2451, 2643, 3143, 3337, 3503, 4939, 5609, 7093, 7597, 10327, 14987, 20427, 21103, 22345, 22481, 24739, 26491, 27193, 28077, 37753, 37915, 42711, 42717, 47647, 48043, 49243, 50071, 51727, 54823, 57478
OFFSET
1,1
LINKS
EXAMPLE
(sigma(phi(x))-phi(sigma(x)))/sigma(x) quotient equals 1 for x=7, 2 for x=327, 3 for x=5609.
MATHEMATICA
fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {100}], j=1}; Do[s=(sf[n]-fs[n])/DivisorSigma[1, n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n]; t[[j]]=n; j=j+1], {n, 2, 1000000}] t
PROG
(PARI) is(n)=my(s=sigma(n), t=sigma(eulerphi(n))-eulerphi(s)); t && t%s==0 \\ Charles R Greathouse IV, Feb 14 2013
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 01 2004
STATUS
approved