login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065395
Commutator of sigma and phi functions.
13
0, -1, 1, -3, 5, -1, 8, -1, 0, 1, 14, -5, 22, 4, 7, -15, 25, -12, 31, 3, 12, 6, 28, -1, 12, 16, 23, 4, 48, -9, 56, -5, 26, 13, 44, -44, 73, 23, 36, 7, 78, -4, 76, 18, 36, 12, 56, -29, 60, -18, 39, 18, 80, 7, 66, 28, 59, 32, 74, -17, 138, 40, 43, -63, 100, -6
OFFSET
1,4
COMMENTS
Golomb (1993) proved that the terms are both positive and negative infinitely often. - Amiram Eldar, Feb 27 2024
REFERENCES
Solomon W. Golomb, Equality among number-theoretic functions, Abstracts Amer. Math. Soc., Vol. 14 (1993), pp. 415-416.
LINKS
Jean-Marie De Koninck and Florian Luca, On the composition of the Euler function and the sum of divisors function, Colloquium Mathematicum, Vol. 108, No. 1 (2007), pp. 31-51.
Solomon W. Golomb, Equality among number-theoretic functions, Unpublished manuscript. (Annotated scanned copy)
FORMULA
a(n) = sigma(phi(n)) - phi(sigma(n)) = A000203(A000010(n)) - A000010(A000203(n)).
a(n) = A062402(n) - A062401(n). - Amiram Eldar, Feb 27 2024
EXAMPLE
n = 13: sigma(13) = 14, phi(14) = 6, phi(13) = 12, sigma(12) = 28, a(13) = 28-6 = 22.
MAPLE
with(numtheory); A065395:=n->sigma(phi(n))-phi(sigma(n)); seq(A065395(n), n=1..100); # Wesley Ivan Hurt, Dec 26 2013
MATHEMATICA
Table[DivisorSigma[1, EulerPhi[n]] - EulerPhi[DivisorSigma[1, n]], {n, 100}] (* T. D. Noe, Nov 04 2013 *)
PROG
(PARI) a(n) = { sigma(eulerphi(n)) - eulerphi(sigma(n)) } \\ Harry J. Smith, Oct 18 2009
(Magma) [DivisorSigma(1, EulerPhi(n))-EulerPhi(DivisorSigma(1, n)): n in [1..70]]; // Bruno Berselli, Oct 20 2015
CROSSREFS
Cf. A000010, A000203, A033632 (positions of 0's), A062401, A062402.
Sequence in context: A289714 A367743 A242390 * A236631 A302800 A367067
KEYWORD
sign,easy
AUTHOR
Labos Elemer, Nov 05 2001
STATUS
approved