login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092318
a(n) = smallest m such that value of odd harmonic series Sum_{j=0..m} 1/(2j+1) is >= n.
8
0, 7, 56, 418, 3091, 22845, 168803, 1247297, 9216353, 68100150, 503195828, 3718142207, 27473561357, 203003686105, 1500005624923, 11083625711270, 81897532160124, 605145459495140, 4471453748222756, 33039822589391675
OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (127 terms corrected by Gerhard Kirchner)
FORMULA
a(n) = floor(exp(2*n-gamma)/4+1/8), for all n > 1. - M. F. Hasler and Robert G. Wilson v, Jan 22 2017
a(n) = floor(exp(2*n-gamma)/4), for all n > 1, see correction in A092315, Gerhard Kirchner, Jul 25 2020
MATHEMATICA
a[n_] := Floor[(Exp[2 n - EulerGamma] + 1/2)/4]; a[1] = 0; Array[a, 20] (* Robert G. Wilson v, Jan 25 2017 *)
PROG
(PARI) A092318=n->floor(exp(2*n-Euler)/4+1/8)-(n<2) \\ Cf. comments in A092315. - M. F. Hasler, Jan 24 2017
CROSSREFS
Apart from first term, same as A092315. Equals (A092317-1)/2.
Cf. A281355 (= a(n) + 1) for a variant.
Sequence in context: A246939 A122996 A343364 * A092315 A229248 A242159
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 16 2004
EXTENSIONS
More terms (computed from A092317) from M. F. Hasler, Jan 22 2017
a(17) corrected by Gerhard Kirchner, Jul 26 2020
STATUS
approved