login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091762
Last n digits of concatenation of first n primes.
12
2, 23, 235, 2357, 35711, 571113, 7111317, 11131719, 113171923, 1317192329, 31719232931, 171923293137, 7192329313741, 19232931374143, 923293137414347, 2329313741434753, 32931374143475359, 293137414347535961, 9313741434753596167, 31374143475359616771, 137414347535961677173, 3741434753596167717379
OFFSET
1,1
COMMENTS
a(n) = A019518(n) mod 10^n; a(n) mod 10^A055642(A000040(n)) = A000040(n); for the primes in this sequence see A091763.
LINKS
Eric Weisstein's World of Mathematics, Consecutive Number Sequences
EXAMPLE
The first 5 primes are 2, 3, 5, 7, 11. The last 5 digits concatenated are 35711 so a(5) = 35711. - David A. Corneth, Sep 15 2019
MATHEMATICA
Table[FromDigits[Take[Flatten[IntegerDigits/@Prime[Range[n]]], -n]], {n, 20}] (* Harvey P. Dale, Sep 15 2019 *)
PROG
(PARI) a(n) = {my(p = prime(n), v = digits(p)); while(#v < n, p = precprime(p - 1); v = concat(digits(p), v)); fromdigits(vector(n, i, v[#v - n + i]))} \\ David A. Corneth, Sep 15 2019
CROSSREFS
Sequence in context: A118385 A098739 A287353 * A309706 A240959 A054261
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Feb 04 2004
EXTENSIONS
More terms from David A. Corneth, Sep 15 2019
STATUS
approved