login
A019518
Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).
84
2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
OFFSET
1,1
REFERENCES
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
LINKS
F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
Eric Weisstein's World of Mathematics, Consecutive Number Sequences
Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
EXAMPLE
E.g. a(6) = 2_3_5_7_11_13 = 23571113.
MATHEMATICA
ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]], {i, 15}] (* Jayanta Basu, May 30 2013 *)
PROG
(PARI) s=""; for(n=1, 30, print1(s=Str(s, prime(n))", ")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
(PARI) A019518(n)=eval(concat(concat([""], primes(n)))) \\ Faster than concat(apply(s->Str(s), primes(n))) or forprime(...s=Str(s, p)). - M. F. Hasler, Oct 06 2013
(Haskell)
a019518 n = a019518_list !! (n-1)
a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
-- Reinhard Zumkeller, Mar 03 2014
(Magma) [Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
CROSSREFS
For the primes in this sequence see A069151. For where the primes occur see A046035.
Cf. A000040, A038394, A046284, A068670 (number of digits).
Sequence in context: A309706 A240959 A054261 * A048677 A132933 A220373
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
Definition edited by N. J. A. Sloane, Jul 02 2017
STATUS
approved