OFFSET
1,1
REFERENCES
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..300
F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
Eric Weisstein's World of Mathematics, Consecutive Number Sequences
Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
EXAMPLE
E.g. a(6) = 2_3_5_7_11_13 = 23571113.
MATHEMATICA
ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]], {i, 15}] (* Jayanta Basu, May 30 2013 *)
PROG
(PARI) s=""; for(n=1, 30, print1(s=Str(s, prime(n))", ")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
(PARI) A019518(n)=eval(concat(concat([""], primes(n)))) \\ Faster than concat(apply(s->Str(s), primes(n))) or forprime(...s=Str(s, p)). - M. F. Hasler, Oct 06 2013
(Haskell)
a019518 n = a019518_list !! (n-1)
a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
-- Reinhard Zumkeller, Mar 03 2014
(Magma) [Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
Definition edited by N. J. A. Sloane, Jul 02 2017
STATUS
approved