login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091759
a(n) = 0^n + 2((n+1)^n - (-1)^n) / (n+2).
0
1, 2, 4, 26, 208, 2222, 29412, 466034, 8609344, 181818182, 4322904100, 114308980106, 3328297874640, 105828636433886, 3649115753173828, 135637824071393762, 5406799097296318720, 230095953656704898102
OFFSET
0,2
FORMULA
a(n) = P(n, n-2, n) where P(n, m, z) = Product_{j=0..n-1} (z - Sum_{k=1..m} e^(j*k*2*Pi*I/n)), I=sqrt(-1).
MAPLE
seq(0^n + 2*((n+1)^n-(-1)^n)/(n+2), n=0..20); # Georg Fischer, May 08 2021
MATHEMATICA
P[n_, m_, z_]:= Product[z - Sum[E^(j*k*2*pi*I/n), {k, 1, m}], {j, 0, n-1}];
Table[FullSimplify[P[n, n-2, n]], {n, 0, 12}] (* Georg Fischer, May 08 2021 *)
PROG
(PARI) a(n) = 0^n + 2*((n+1)^n - (-1)^n) / (n+2); \\ Michel Marcus, May 09 2021
CROSSREFS
Cf. A083063.
Sequence in context: A215882 A032328 A019034 * A262067 A193480 A032076
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2004
STATUS
approved