login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090359
Self-convolution equals the binomial transform of A090358: A^2 = BINOMIAL(A090358), where A090358^6 = BINOMIAL(A090358^5).
2
1, 1, 4, 40, 640, 13816, 374636, 12229364, 466769330, 20391705290, 1003264704212, 54885373562372, 3304609250020008, 217139910688424400, 15461303963210314980, 1185856988993966140380, 97466557932008735970465
OFFSET
0,3
COMMENTS
See comments in A090358.
LINKS
FORMULA
a(n) ~ (n-1)! / (50 * (log(6/5))^(n+1)). - Vaclav Kotesovec, Nov 19 2014
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A^5, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B); B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); polcoeff(B^(1/2), n, x))}
CROSSREFS
Cf. A090358.
Sequence in context: A141011 A365570 A365587 * A049308 A227055 A343446
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved