login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-convolution equals the binomial transform of A090358: A^2 = BINOMIAL(A090358), where A090358^6 = BINOMIAL(A090358^5).
2

%I #6 Nov 19 2014 09:59:04

%S 1,1,4,40,640,13816,374636,12229364,466769330,20391705290,

%T 1003264704212,54885373562372,3304609250020008,217139910688424400,

%U 15461303963210314980,1185856988993966140380,97466557932008735970465

%N Self-convolution equals the binomial transform of A090358: A^2 = BINOMIAL(A090358), where A090358^6 = BINOMIAL(A090358^5).

%C See comments in A090358.

%H Vaclav Kotesovec, <a href="/A090359/b090359.txt">Table of n, a(n) for n = 0..310</a>

%F a(n) ~ (n-1)! / (50 * (log(6/5))^(n+1)). - _Vaclav Kotesovec_, Nov 19 2014

%o (PARI) {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^5,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B);B=subst(A,x,x/(1-x))/(1-x)+x*O(x^n); polcoeff(B^(1/2),n,x))}

%Y Cf. A090358.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 26 2003