login
A193691
Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements <= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.
5
1, 1, 1, 2, 1, 2, 2, 4, 5, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4, 8, 8, 16, 20, 10, 20, 26, 28, 5, 10, 10, 20, 25, 13, 26, 34, 37, 14, 28, 37, 41, 42, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4
OFFSET
0,4
LINKS
Alois P. Heinz, Rows n = 0..9, flattened
EXAMPLE
Dyck paths of semilength n=3 listed in lexicographic order:
. /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \
. 101010 101100 110010 110100 111000
. k = (1) (2) (3) (4) (5)
.
We have (1) <= (1); (1),(2) <= (2); (1),(3) <= (3); (1),(2),(3),(4) <= (4); and (1),(2),(3),(4),(5) <= (5), thus row 3 = [1, 2, 2, 4, 5].
Triangle begins:
1;
1;
1, 2;
1, 2, 2, 4, 5;
1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14;
1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, ...
MAPLE
d:= proc(n, l) local m; m:= nops(l);
`if`(n=m, [l], [seq(d(n, [l[], j])[],
j=`if`(m=0, 1, max(m+1, l[-1]))..n)])
end:
le:= proc(x, y) local i;
for i to nops(x) do if x[i]>y[i] then return false fi od; true
end:
T:= proc(n) option remember; local l;
l:= d(n, []);
seq(add(`if`(le(l[i], l[j]), 1, 0), i=1..j), j=1..nops(l))
end:
seq(T(n), n=0..6);
MATHEMATICA
d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m+1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]], Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[i]], l[[j]]], 1, 0], {i, 1, j}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)
CROSSREFS
Row sums give A005700.
Lengths and last elements of rows give A000108.
Sequence in context: A026832 A225044 A325246 * A089408 A350287 A208888
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Aug 02 2011
STATUS
approved