login
A087278
Nonnegative integers whose distance to the nearest square is not greater than 1.
3
0, 1, 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 24, 25, 26, 35, 36, 37, 48, 49, 50, 63, 64, 65, 80, 81, 82, 99, 100, 101, 120, 121, 122, 143, 144, 145, 168, 169, 170, 195, 196, 197, 224, 225, 226, 255, 256, 257, 288, 289, 290, 323, 324, 325, 360, 361, 362, 399, 400, 401
OFFSET
0,3
FORMULA
a(3*k) = (k+1)^2 - 1 = A005563(k+1);
a(3*k+1) = (k+1)^2 = A000290(k+1);
a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).
a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.
G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - R. J. Mathar, May 22 2019
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)
MATHEMATICA
dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]}, Min[n-x^2, (x+1)^2-n]<=1]; Select[Range[0, 450], dnsQ] (* Harvey P. Dale, May 25 2011 *)
Table[n^2+{-1, 0, 1}, {n, 20}]//Flatten (* Harvey P. Dale, Jan 17 2022 *)
PROG
(Python)
def A087278(n):
a, b = divmod(n, 3)
return a*(a+2)+b # Chai Wah Wu, Aug 03 2022
CROSSREFS
Union of A005563, A000290 and A002522.
Sequence in context: A190018 A217349 A329574 * A054220 A337801 A116214
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 28 2003
STATUS
approved