login
A010872
a(n) = n mod 3.
123
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2
OFFSET
0,3
COMMENTS
Fixed point of morphism 0 -> 01, 1 -> 20, 2 -> 12.
Complement of A002264, since 3*A002264(n) + a(n) = n. - Hieronymus Fischer, Jun 01 2007
Decimal expansion of 4/333. - Elmo R. Oliveira, Feb 19 2024
Period 3: repeat [0, 1, 2]. - Elmo R. Oliveira, Jun 20 2024
FORMULA
a(n) = n - 3*floor(n/3) = a(n-3).
G.f.: (2*x^2+x)/(1-x^3). - Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003
From Hieronymus Fischer, May 29 2007: (Start)
a(n) = 1 + (1-2*cos(2*Pi*(n-1)/3)) * sin(2*Pi*(n-1)/3)) / sqrt(3).
a(n) = (1-r^n)*(1+r^n/(1-r)) where r=exp(2*Pi*i/3)=(-1+sqrt(3)*i)/2 and i=sqrt(-1). [corrected by Guenther Schrack, Sep 23 2019] (End)
From Hieronymus Fischer, Jun 01 2007: (Start)
a(n) = (16/9)*((sin(Pi*(n-2)/3))^2+2*(sin(Pi*(n-1)/3))^2)*(sin(Pi*n/3))^2.
a(n) = (4/3)*(|sin(Pi*(n-2)/3)|+2*|sin(Pi*(n-1)/3)|)*|sin(Pi*n/3)|.
a(n) = (4/9)*((1-cos(2*Pi*(n-2)/3))+2*(1-cos(2*Pi*(n-1)/3)))*(1-cos(2*Pi*n/3)). (End)
a(n) = 3 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008
a(n) = 1-2*sin(4*Pi*(n+2)/3)/sqrt(3). - Jaume Oliver Lafont, Dec 05 2008
From Wesley Ivan Hurt, May 27 2015, Mar 22 2016: (Start)
a(n) = 1 - 0^((-1)^(n/3)-(-1)^n) + 0^((-1)^((n+1)/3)+(-1)^n).
a(n) = 1 + (-1)^((2*n+4)/3)/3 + (-1)^((-2*n-4)/3)/3 + 2*(-1)^((2*n+2)/3)/3 + 2*(-1)^((-2*n-2)/3)/3.
a(n) = 1 + 2*cos(Pi*(2*n+4)/3)/3 + 4*cos(Pi*(2*n+2)/3)/3. (End)
a(n) = (r^n*(r-1) - r^(2*n)*(r + 2) + 3)/3 where r = (-1 + sqrt(-3))/2. - Guenther Schrack, Sep 23 2019
E.g.f.: exp(x) - exp(-x/2)*(cos(sqrt(3)*x/2) + sin(sqrt(3)*x/2)/sqrt(3)). - Stefano Spezia, Mar 01 2020
a(n) = A010882(n) - 1 = A131555(2*n) = A131555(2*n+1). - Elmo R. Oliveira, Jun 25 2024
EXAMPLE
G.f. = x + 2*x^2 + x^4 + 2*x^5 + x^7 + 2*x^8 + x^10 + 2*x^11 + x^13 + ...
MAPLE
A010872:=n->(n mod 3): seq(A010872(n), n=0..100); # Wesley Ivan Hurt, May 27 2015
MATHEMATICA
Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> {1, 2}})]}], {0}, 7] (* Robert G. Wilson v, Feb 28 2005 *)
PROG
(Haskell)
a010872 = (`mod` 3)
a010872_list = cycle [0, 1, 2] -- Reinhard Zumkeller, May 26 2012
(Magma) [n mod 3 : n in [0..100]]; // Wesley Ivan Hurt, May 27 2015
(PARI) x='x+O('x^200); concat(0, Vec((2*x^2+x)/(1-x^3))) \\ Altug Alkan, Mar 23 2016
CROSSREFS
Cf. A010882, A130481 (partial sums), A131555.
Other related sequences are A130482, A130483, A130484, A130485.
Sequence in context: A112248 A244860 A308009 * A220663 A220659 A025858
KEYWORD
easy,nonn
EXTENSIONS
Edited by Joerg Arndt, Apr 21 2014
STATUS
approved