login
A085405
Common residues of binomial(3n+2,n+1)/(3n+2) modulo 2.
6
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
The positions of ones are given by A022340 and runs of zeros are given by A085407: both are related to the Fibonacci sequence.
FORMULA
a(n) = C(3n+2, n+1)/(3n+2) (Mod 2) = A006013(n) (Mod 2), where A006013 is the self-convolution of A001764 (ternary trees).
a(n) = A323239(A005940(1+n)). - Antti Karttunen, Jan 12 2019
PROG
(PARI) A085405(n) = ((binomial((3*n)+2, n+1)/((3*n)+2))%2); \\ Antti Karttunen, Jan 12 2019
(PARI) A085405(n) = if(n%2, 0, while(n>0, my(nextn=(n>>1)); if(1==(nextn%2)*(n%2), return(0)); n = nextn); (1)); \\ (Much faster than above program) - Antti Karttunen, Jan 12 2019
CROSSREFS
Sequence in context: A284957 A357385 A316533 * A036988 A108357 A309848
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2003
STATUS
approved