login
A309848
Digits of the multiplicative inverse of A309754.
1
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1
OFFSET
-1
FORMULA
By definition, (Sum_{i=-1..n} a(i)*2^(i+1)) * (Sum_{i=0..floor((n+1)/2)} 2^(2*i)/(2*i+1)) == 1 (mod 2^(n+2)).
EXAMPLE
arctanh(2) = ...0111000110010001010010010111010001111010, so 1/arctanh(2) = 010110010000100011000000001011010001010.1.
PROG
(PARI) a(n) = lift(Mod(sum(i=0, (n+1)/2, 2^(2*i)/(2*i+1)), 2^(n+2))^(-1))\2^(n+1)
CROSSREFS
Sequence in context: A085405 A036988 A108357 * A326822 A088517 A325897
KEYWORD
nonn,base
AUTHOR
Jianing Song, Aug 20 2019
STATUS
approved