login
A083093
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 3.
35
1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1
OFFSET
0,5
COMMENTS
Start with [1], repeatedly apply the map 0 -> [000/000/000], 1 -> [111/120/100], 2 -> [222/210/200]. - Philippe Deléham, Apr 16 2009
{T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(3))/log(3) = log(6)/log(3) = 1.63092... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - Richard L. Ollerton, Dec 14 2021
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Santa Clara, Calif.: The Fibonacci Association, 1993, pp. 130-132.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Disc. Appl. Math. 66 (1996) 1-22.
Lin Jiu and Christophe Vignat, On Binomial Identities in Arbitrary Bases, arXiv:1602.04149 [math.CO], 2016.
Y. Moshe, The density of 0's in recurrence double sequences, J. Number Theory, 103 (2003), 109-121.
Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
FORMULA
T(i, j) = binomial(i, j) mod 3.
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 3. - Reinhard Zumkeller, Jul 11 2013
T(n,k) = Product_{i>=0} binomial(n_i,k_i) mod 3, where n = Sum_{i>=0} n_i*3^i and k = Sum_{i>=0} k_i*3^i, 0<=n_i, k_i <=2 [Allouche et al.]. - R. J. Mathar, Jul 26 2017
EXAMPLE
. Rows 0 .. 3^3:
. 0: 1
. 1: 1 1
. 2: 1 2 1
. 3: 1 0 0 1
. 4: 1 1 0 1 1
. 5: 1 2 1 1 2 1
. 6: 1 0 0 2 0 0 1
. 7: 1 1 0 2 2 0 1 1
. 8: 1 2 1 2 1 2 1 2 1
. 9: 1 0 0 0 0 0 0 0 0 1
. 10: 1 1 0 0 0 0 0 0 0 1 1
. 11: 1 2 1 0 0 0 0 0 0 1 2 1
. 12: 1 0 0 1 0 0 0 0 0 1 0 0 1
. 13: 1 1 0 1 1 0 0 0 0 1 1 0 1 1
. 14: 1 2 1 1 2 1 0 0 0 1 2 1 1 2 1
. 15: 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1
. 16: 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1
. 17: 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1
. 18: 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
. 19: 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1
. 20: 1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1
. 21: 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1
. 22: 1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1
. 23: 1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1
. 24: 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1
. 25: 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1
. 26: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
. 27: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .
- Reinhard Zumkeller, Jul 11 2013
MAPLE
A083093 := proc(n, k)
modp(binomial(n, k), 3) ;
end proc:
seq(seq(A083093(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Jul 26 2017
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 3] (* Robert G. Wilson v, Jan 19 2004 *)
PROG
(Haskell)
a083093 n k = a083093_tabl !! n !! k
a083093_row n = a083093_tabl !! n
a083093_tabl = iterate
(\ws -> zipWith (\u v -> mod (u + v) 3) ([0] ++ ws) (ws ++ [0])) [1]
-- Reinhard Zumkeller, Jul 11 2013
(Magma) /* As triangle: */ [[Binomial(n, k) mod 3: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
(Python)
from sympy import binomial
def T(n, k):
return binomial(n, k) % 3
for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 26 2017
CROSSREFS
Cf. A006996 (central terms), A173019, A206424, A227428.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), (this sequence) (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A309365 A204179 A204244 * A334621 A293899 A015794
KEYWORD
easy,nonn,tabl
AUTHOR
Benoit Cloitre, Apr 22 2003
STATUS
approved