OFFSET
0,5
COMMENTS
{T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(11))/log(11) = log(66)/log(11) = 1.74722... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - Richard L. Ollerton, Dec 14 2021
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Santa Clara, Calif.: The Fibonacci Association, 1993, pp. 130-132.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
Zubeyir Cinkir and Aysegul Ozturkalan, An extension of Lucas Theorem, arXiv:2309.00109 [math.NT], 2023. See Figures 3 and 4 p. 6.
Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
FORMULA
T(i, j) = binomial(i, j) mod 11.
From Robert Israel, Jan 02 2019: (Start)
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 11 with T(n,0) = 1.
T(n,k) = (Product_i binomial(n_i, k_i)) mod 11, where n_i and k_i are the base-11 digits of n and k. (End)
MAPLE
R[0]:= 1:
for n from 1 to 20 do
R[n]:= op([R[n-1], 0] + [0, R[n-1]] mod 11);
od:
for n from 0 to 20 do R[n] od; # Robert Israel, Jan 02 2019
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 11]
CROSSREFS
Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A095143, A008975, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), (this sequence) (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
KEYWORD
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved