login
A095144
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 11.
13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 4, 9, 4, 6, 1, 1, 7, 10, 2, 2, 10, 7, 1, 1, 8, 6, 1, 4, 1, 6, 8, 1, 1, 9, 3, 7, 5, 5, 7, 3, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1
OFFSET
0,5
COMMENTS
{T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(11))/log(11) = log(66)/log(11) = 1.74722... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - Richard L. Ollerton, Dec 14 2021
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Santa Clara, Calif.: The Fibonacci Association, 1993, pp. 130-132.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
Zubeyir Cinkir and Aysegul Ozturkalan, An extension of Lucas Theorem, arXiv:2309.00109 [math.NT], 2023. See Figures 3 and 4 p. 6.
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
FORMULA
T(i, j) = binomial(i, j) mod 11.
From Robert Israel, Jan 02 2019: (Start)
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 11 with T(n,0) = 1.
T(n,k) = (Product_i binomial(n_i, k_i)) mod 11, where n_i and k_i are the base-11 digits of n and k. (End)
MAPLE
R[0]:= 1:
for n from 1 to 20 do
R[n]:= op([R[n-1], 0] + [0, R[n-1]] mod 11);
od:
for n from 0 to 20 do R[n] od; # Robert Israel, Jan 02 2019
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 11]
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), (this sequence) (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A180182 A275198 A095145 * A339359 A144398 A034932
KEYWORD
easy,nonn,tabl
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved