login
A080648
Sum of prime factors of Fibonacci(n).
5
0, 0, 2, 3, 5, 2, 13, 10, 19, 16, 89, 5, 233, 42, 68, 57, 1597, 38, 150, 60, 436, 288, 28657, 35, 3006, 754, 181, 326, 514229, 110, 2974, 2264, 19892, 5168, 141979, 148, 2443, 9499, 135956, 2228, 62158, 676, 433494437, 641, 109526, 29257, 2971215073, 1185
OFFSET
1,3
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1408 (terms 1..1000 from T. D. Noe, using Blair Kelly's data)
EXAMPLE
a(8) = 10 because Fibonacci(8) = 21 and the sum of the prime divisors {3, 7} equals 10.
MAPLE
with (numtheory):with(combinat, fibonacci):
sopf:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]:
add (e[j][1], j=1..nops(e)) end:
seq (sopf(n), n=1..100); # Michel Lagneau, Nov 13 2012
A080648 := proc(n)
A008472(combinat[fibonacci](n)) ;
end proc: # R. J. Mathar, Nov 15 2012
# third Maple program:
a:= n-> add(i[1], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]):
seq(a(n), n=1..48); # Alois P. Heinz, Sep 03 2019
MATHEMATICA
Table[Apply[Plus, Transpose[FactorInteger[Fibonacci[n]]][[1]]], {n, 3, 100}] (* Pe *)
Array[Plus@@First/@FactorInteger[Fibonacci[ # ]]&, 40 ] (* Michel Lagneau, Nov 13 2012 *)
PROG
(PARI) a(n) = vecsum(factor(fibonacci(n))[, 1]); \\ Michel Marcus, Oct 15 2019
(Magma) [&+PrimeDivisors(Fibonacci(n)):n in [1..48]]; // Marius A. Burtea, Oct 15 2019
CROSSREFS
Cf. A000045, A008472, A060442 (Fibonacci prime factors).
Sequence in context: A139044 A060442 A060385 * A113195 A069110 A238684
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Feb 28 2003
STATUS
approved