# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a080648 Showing 1-1 of 1 %I A080648 #27 Sep 08 2022 08:45:09 %S A080648 0,0,2,3,5,2,13,10,19,16,89,5,233,42,68,57,1597,38,150,60,436,288, %T A080648 28657,35,3006,754,181,326,514229,110,2974,2264,19892,5168,141979,148, %U A080648 2443,9499,135956,2228,62158,676,433494437,641,109526,29257,2971215073,1185 %N A080648 Sum of prime factors of Fibonacci(n). %H A080648 Amiram Eldar, Table of n, a(n) for n = 1..1408 (terms 1..1000 from T. D. Noe, using Blair Kelly's data) %H A080648 Blair Kelly, Fibonacci and Lucas Factorizations %e A080648 a(8) = 10 because Fibonacci(8) = 21 and the sum of the prime divisors {3, 7} equals 10. %p A080648 with (numtheory):with(combinat, fibonacci): %p A080648 sopf:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]: %p A080648 add (e[j][1], j=1..nops(e)) end: %p A080648 seq (sopf(n), n=1..100); # _Michel Lagneau_, Nov 13 2012 %p A080648 A080648 := proc(n) %p A080648 A008472(combinat[fibonacci](n)) ; %p A080648 end proc: # _R. J. Mathar_, Nov 15 2012 %p A080648 # third Maple program: %p A080648 a:= n-> add(i[1], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]): %p A080648 seq(a(n), n=1..48); # _Alois P. Heinz_, Sep 03 2019 %t A080648 Table[Apply[Plus, Transpose[FactorInteger[Fibonacci[n]]][[1]]], {n, 3, 100}] (* Pe *) %t A080648 Array[Plus@@First/@FactorInteger[Fibonacci[ # ]]&, 40 ] (* _Michel Lagneau_, Nov 13 2012 *) %o A080648 (PARI) a(n) = vecsum(factor(fibonacci(n))[,1]); \\ _Michel Marcus_, Oct 15 2019 %o A080648 (Magma) [&+PrimeDivisors(Fibonacci(n)):n in [1..48]]; // _Marius A. Burtea_, Oct 15 2019 %Y A080648 Cf. A000045, A008472, A060442 (Fibonacci prime factors). %K A080648 nonn %O A080648 1,3 %A A080648 _Joseph L. Pe_, Feb 28 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE