login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079679
a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=6.
3
1, 12, 168, 2424, 35400, 520236, 7674144, 113482584, 1681028136, 24932533800, 370144424376, 5499182587416, 81748907485248, 1215834858032820, 18090048027643200, 269246037610828656, 4008495234662771688
OFFSET
0,2
COMMENTS
More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013.
FORMULA
a(n) = 3/5*(46656/3125)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.388...
c = 8/(3*sqrt(15*Pi)) = 0.388461664210517... - Vaclav Kotesovec, May 25 2020
a(n) = sum(k=0,n,binomial(6*k+l,k)*binomial(6*(n-k)-l,n-k)) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = sum(k=0,n,5^(n-k)*binomial(6n+1,k)). - Rui Duarte and António Guedes de Oliveira, Feb 17 2013
a(n) = sum(k=0,n,6^(n-k)*binomial(5n+k,k)) - Rui Duarte and António Guedes de Oliveira, Feb 17 2013
G.f.: hypergeom([1/6, 1/3, 1/2, 2/3, 5/6],[1/5, 2/5, 3/5, 4/5],46656*x/3125)^2. - Mark van Hoeij, Apr 19 2013
PROG
(PARI) a(n) = sum(k=0, n, 5^(n-k)*binomial(6*n+1, k));
vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
STATUS
approved