login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079678
a(n) = a(n,m) = sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) for m=5.
3
1, 10, 115, 1360, 16265, 195660, 2361925, 28577440, 346316645, 4201744870, 51023399190, 620022989200, 7538489480075, 91696845873760, 1115794688036920, 13581508654978560, 165357977228808925, 2013721466517360650
OFFSET
0,2
COMMENTS
More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013.
FORMULA
a(n) = 5/8*(3125/256)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.356...
c = sqrt(2)/sqrt(5*Pi) = 0.3568248232305542229... - Vaclav Kotesovec, May 25 2020
a(n) = sum(k=0,n,binomial(5*k+l,k)*binomial(5*(n-k)-l,n-k)) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = sum(k=0,n,4^(n-k)*binomial(5n+1,k)). - Rui Duarte and António Guedes de Oliveira, Feb 17 2013
a(n) = sum(k=0,n,5^(n-k)*binomial(4n+k,k)). - Rui Duarte and António Guedes de Oliveira, Feb 17 2013
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/4, 1/2, 3/4], (3125/256)*x)^2 satisfies
((3125/2)*g^3*x^4-128*g^3*x^3)*g''''+((-3125*g^2*x^4+256*g^2*x^3)*g'+12500*g^3*x^3-576*g^3*x^2)*g'''+(-(9375/4)*g^2*x^4+192*g^2*x^3)*g''^2+(((28125/4)*g*x^4-576*g*x^3)*(g')^2+(-18750*g^2*x^3+864*g^2*x^2)*g'+22500*g^3*x^2-408*g^3*x)*g''+(-(46875/16)*x^4+240*x^3)*(g')^4+(9375*g*x^3-432*g*x^2)*(g')^3+(-11250*g^2*x^2+204*g^2*x)*(g')^2+(7500*g^3*x-12*g^3)*g'+120*g^4 = 0. - Robert Israel, Jul 16 2015
MAPLE
seq(add(binomial(5*k, k)*binomial(5*(n-k), n-k), k=0..n), n=0..30); # Robert Israel, Jul 16 2015
MATHEMATICA
m = 5; Table[Sum[Binomial[m k, k] Binomial[m (n - k), n - k], {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Sep 30 2015 *)
PROG
(PARI) main(size)=my(k, n, m=5); concat(1, vector(size, n, sum(k=0, n, binomial(m*k, k)*binomial(m*(n-k), n-k)))) \\ Anders Hellström, Jul 16 2015
(PARI) a(n) = sum(k=0, n, 4^(n-k)*binomial(5*n+1, k));
vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
CROSSREFS
Sequence in context: A185391 A104520 A138845 * A233908 A089833 A308667
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
STATUS
approved