login
A079011
Least prime p introducing prime-difference pattern {d, 2*d}, where d = 2*n, i.e., {p, p+2*n, p+2*n+4*n} = {p, p+2*n, p+6*n} are consecutive primes.
4
5, 397, 503, 1823, 1627, 8317, 5939, 94153, 69539, 83117, 444187, 177019, 428873, 1179649, 955511, 1625027, 2541289, 1290683, 19856363, 12183757, 5412091, 23374859, 27248701, 38235013, 21369059, 34718041, 84120737, 59859131, 125283913, 44155159, 70136597, 324954127
OFFSET
1,1
EXAMPLE
For n=3, d = 2*n = 6, d-pattern = {6, 12}, a(3) = 503, first corresponding prime triple is {503, 509, 521}.
MATHEMATICA
d[x_] := Prime[x+1]-Prime[x]; t=Table[0, {70}]; Do[s=d[n]/2; If[(d[n+1]==4*s)&&(t[[s]]==0), t[[s]]=Prime[n]], {n, 2, 100000}]; t
PROG
(PARI) a(n) = my(p=5, q=3, r=2); until(r+2*n==q&&q+4*n==p, r=q; q=p; p=nextprime(p+1)); r; \\ Jinyuan Wang, Feb 10 2021
CROSSREFS
Sequence in context: A057633 A193126 A006700 * A195502 A189307 A198538
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2003
EXTENSIONS
Terms corrected and more terms from Jinyuan Wang, Feb 10 2021
STATUS
approved