login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078905
The q expansion of Lambda^5, a Hauptmodul for Gamma_1(5).
18
1, -5, 15, -30, 40, -26, -30, 125, -220, 245, -124, -180, 615, -1010, 1085, -550, -705, 2415, -3850, 3980, -1926, -2460, 8090, -12550, 12715, -6074, -7500, 24360, -37150, 36930, -17251, -21155, 67380, -101210, 99295, -45924, -55305, 174500, -259140, 251275, -114750
OFFSET
1,2
COMMENTS
Denoted by r^5(tau) by Duke (2005). - Michael Somos, Jul 09 2014
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 12, Entry 1(ii).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1001 from T. D. Noe)
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 150.
FORMULA
G.f.: x * ( Product_{k>0} (1 - x^{5*k - 1}) * (1 - x^{5*k - 4}) / ((1 - x^{5*k - 2}) * (1 - x^{5*k - 3})) )^5
G.f.: x * ((Sum_{k in Z} (-1)^k * x^((5*k + 3) * k/2)) / (Sum_{k in Z} (-1)^k * x^((5*k + 1) * k/2)))^5.
G.f. A(x) = x * B(x)^5 where B(x) is the g.f. of A007325.
Euler transform of period 5 sequence [ -5, 5, 5, -5, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u,v) = u^2 - v + u*v^3 + u^3*v^2 + 10*u*v * (1 - u + v + u*v). - Michael Somos, Mar 09 2004
Given g.f. A(q), then q * A'(q) / A(q) = g.f. of A109064. [Duke (2005)] - Michael Somos, Jul 09 2014
a(1) = 1, a(n) = -(5/(n-1))*Sum_{k=1..n-1} A109091(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = q - 5*q^2 + 15*q^3 - 30*q^4 + 40*q^5 - 26*q^6 - 30*q^7 + 125*q^8 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q, q^5]*(QP[q^4, q^5]/(QP[q^2, q^5]*QP[q^3, q^5]) ))^5 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, from g.f. of A007325 *)
PROG
(PARI) {a(n) = local(k); if( n<1, 0, k = (7 + sqrtint(40*n - 32)) \ 10; polcoeff( x * (sum(i=-k, k, (-1)^i * x^((5*i^2 + 3*i) / 2), O(x^n)) / sum(i=-k, k, (-1)^i * x^((5*i^2 + i) / 2), O(x^n)))^5, n))};
(PARI) {a(n) = local(A); if( n<1, 0, A=O(x^n); A = (eta(x + A) / eta(x^5 + A))^6 / x; polcoeff( 2 / (11 + A + sqrt(125 + 22*A + A^2)), n))};
(PARI) {a(n) = local(A, u, v); if( n<0, 0, A=x; for(k=2, n, u = A + x*O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff( u^2 - v + u*v^3 + u^3*v^2 + 10*u*v * (1 - u + v + u*v), k+1) / 2); polcoeff(A, n))};
CROSSREFS
Sequence in context: A188350 A268222 A285630 * A059160 A319930 A357690
KEYWORD
sign,easy,nice
AUTHOR
Michael Somos, Dec 12 2002
STATUS
approved