login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The q expansion of Lambda^5, a Hauptmodul for Gamma_1(5).
18

%I #30 Apr 02 2017 09:42:11

%S 1,-5,15,-30,40,-26,-30,125,-220,245,-124,-180,615,-1010,1085,-550,

%T -705,2415,-3850,3980,-1926,-2460,8090,-12550,12715,-6074,-7500,24360,

%U -37150,36930,-17251,-21155,67380,-101210,99295,-45924,-55305,174500,-259140,251275,-114750

%N The q expansion of Lambda^5, a Hauptmodul for Gamma_1(5).

%C Denoted by r^5(tau) by Duke (2005). - _Michael Somos_, Jul 09 2014

%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.

%D B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 12, Entry 1(ii).

%H Seiichi Manyama, <a href="/A078905/b078905.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1001 from T. D. Noe)

%H W. Duke, <a href="http://dx.doi.org/10.1090/S0273-0979-05-01047-5">Continued fractions and modular functions</a>, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 150.

%F G.f.: x * ( Product_{k>0} (1 - x^{5*k - 1}) * (1 - x^{5*k - 4}) / ((1 - x^{5*k - 2}) * (1 - x^{5*k - 3})) )^5

%F G.f.: x * ((Sum_{k in Z} (-1)^k * x^((5*k + 3) * k/2)) / (Sum_{k in Z} (-1)^k * x^((5*k + 1) * k/2)))^5.

%F G.f. A(x) = x * B(x)^5 where B(x) is the g.f. of A007325.

%F Euler transform of period 5 sequence [ -5, 5, 5, -5, 0, ...].

%F G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u,v) = u^2 - v + u*v^3 + u^3*v^2 + 10*u*v * (1 - u + v + u*v). - _Michael Somos_, Mar 09 2004

%F Given g.f. A(q), then q * A'(q) / A(q) = g.f. of A109064. [Duke (2005)] - _Michael Somos_, Jul 09 2014

%F a(1) = 1, a(n) = -(5/(n-1))*Sum_{k=1..n-1} A109091(k)*a(n-k) for n > 1. - _Seiichi Manyama_, Apr 01 2017

%e G.f. = q - 5*q^2 + 15*q^3 - 30*q^4 + 40*q^5 - 26*q^6 - 30*q^7 + 125*q^8 + ...

%t QP = QPochhammer; s = (QP[q, q^5]*(QP[q^4, q^5]/(QP[q^2, q^5]*QP[q^3, q^5]) ))^5 + O[q]^50; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015, from g.f. of A007325 *)

%o (PARI) {a(n) = local(k); if( n<1, 0, k = (7 + sqrtint(40*n - 32)) \ 10; polcoeff( x * (sum(i=-k, k, (-1)^i * x^((5*i^2 + 3*i) / 2), O(x^n)) / sum(i=-k, k, (-1)^i * x^((5*i^2 + i) / 2), O(x^n)))^5, n))};

%o (PARI) {a(n) = local(A); if( n<1, 0, A=O(x^n); A = (eta(x + A) / eta(x^5 + A))^6 / x; polcoeff( 2 / (11 + A + sqrt(125 + 22*A + A^2)), n))};

%o (PARI) {a(n) = local(A, u, v); if( n<0, 0, A=x; for(k=2, n, u = A + x*O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff( u^2 - v + u*v^3 + u^3*v^2 + 10*u*v * (1 - u + v + u*v), k+1) / 2); polcoeff(A, n))};

%Y Cf. A007325, A109064.

%K sign,easy,nice

%O 1,2

%A _Michael Somos_, Dec 12 2002