login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078906
Expansion of j in powers of Gamma(5)-modular function Lambda^5.
2
1, 739, 196874, 22478125, 1086128125, 35307387500, 913727546875, 20389341653125, 410010534950000, 7633186177665625, 133911227595521875, 2240979684247156250, 36090410657726350000, 563019001047724506250
OFFSET
-1,2
REFERENCES
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc., 42 (2005), 137-162; see Eq. (5.3).
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
H. McKean and V. Moll. Elliptic Curves, Camb. Univ. Press, p. 22.
FORMULA
G.f.: (1+228x+494x^2-228x^3+x^4)^3/(x(1-11x-x^2)^5).
EXAMPLE
j = 1/x + 739 + 196874*x + 22478125*x^2 + ... where x=Lambda^5=A078905.
MAPLE
t1:=1+228*z+494*z^2-228*z^3+z^4; t2:=-t1^3/(z*(z^2+11*z-1)^5); # t2 is Duke's g.f.
PROG
(PARI) a(n)=polcoeff((1-228*(x^3-x)+494*x^2+x^4)^3/x/(1-11*x-x^2)^5+x*O(x^n), n)
CROSSREFS
Cf. A078905, A000521. A066404(n)=(-1)^n*a(n-1).
Sequence in context: A077723 A235466 A202417 * A066404 A066402 A243778
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 12 2002
STATUS
approved