login
A078817
Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).
5
1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
OFFSET
0,2
LINKS
Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
Jovan Mikic, A Note on the Gessel Numbers, arXiv:2203.12931 [math.CO], 2022.
FORMULA
T(n, k) = A000984(n)*A002457(k)/(n+k+1) = T(k, n)*(2k+1)/(2n+1).
EXAMPLE
Rows start:
1, 3, 10, 35, 126, 462, 1716,
1, 4, 15, 56, 210, 792, 3003,
2, 9, 36, 140, 540, 2079, 8008,
5, 24, 100, 400, 1575, 6160, 24024,
14, 70, 300, 1225, 4900, 19404, 76440,
42, 216, 945, 3920, 15876, 63504,252252,
132, 693, 3080, 12936, 52920,213444,853776,
etc.
MAPLE
A078817 := proc(n, k)
binomial(2*n, n)*binomial(2*k, k)*(2*k+1)/(n+k+1) ;
end proc: # R. J. Mathar, Dec 06 2018
CROSSREFS
Columns include A000108 (catalan), A038629, A078818 and A078819. Rows include A001700, A001791, A007946 and A078820. Diagonals include A002894 and A060150.
Essentially a reflected version of A033820.
Sequence in context: A176992 A319375 A107870 * A316193 A091042 A111418
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Dec 07 2002
STATUS
approved