OFFSET
0,3
COMMENTS
f(n,k) = 2^{n-2(k-2)}sum(T(k-2,j)*binomial(n+2*(k-2-j),2*(k-2-j)),j=0..k-2) is the number of length n k-ary strings (k >= 2) which avoid a rising triple (pattern 123) or any other given 3-letter permutation pattern.
Row sums are the powers of 4. This is explained by a simple statistic on the 4^n lattice paths of length 2n formed from upsteps U=(1,1) and downsteps D=(1,-1). For such a path, define X = number of upsteps that lie above ground level (GL), the horizontal line through the initial vertex, and before the last vertex at GL. For UDDUUUUDDU for instance, the last vertex at GL follows the fourth step, and so X = 1. T(n,k) is the number of these paths with X=n-k. For example, T(2,1)=4 counts UDUU, UDDU, UDDD, DUUD because each has n-k=1 upsteps above GL and before the last vertex at GL. - David Callan, Nov 21 2011
LINKS
Alexander Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsylvania, 1998.
Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
Walter Shur, Two Game-Set Inequalities, J. Integer Seqs., Vol. 6, 2003.
FORMULA
T(k,0) = binomial(2*k, k)/(k+1), the k-th Catalan number; T(k,k) = binomial(2*(k+1),k+1)/2, half the (k+1)-st central binomial coefficient sum of entries in row k (over j) = 2^{2*(k-1)}
T(k,j) = sum(C(k-i)D(i), i=0..j), C(i) = binomial(2*i,i)/(i+1), D(i) = binomial(2*i,i).
G.f.: 2/(1-4*x*y+sqrt((1-4*x)*(1-4*x*y))). - Vladeta Jovovic, Dec 14 2003
EXAMPLE
{1},
{1, 3},
{2, 4, 10},
{5, 9, 15, 35},
{14, 24, 36, 56, 126},
{42, 70, 100, 140, 210, 462},
{132, 216, 300, 400, 540, 792, 1716},
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Dec 10 2003
STATUS
approved