login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078046
Expansion of (1-x)/(1 + x + x^2 - x^3).
4
1, -2, 1, 2, -5, 4, 3, -12, 13, 2, -27, 38, -9, -56, 103, -56, -103, 262, -215, -150, 627, -692, -85, 1404, -2011, 522, 2893, -5426, 3055, 5264, -13745, 11536, 7473, -32754, 36817, 3410, -72981, 106388, -29997, -149372, 285757, -166382, -268747, 720886, -618521, -371112, 1710519, -1957928
OFFSET
0,2
COMMENTS
The root of the denominator [1 + x + x^2 - x^3] is the tribonacci constant.
This is the negative of the tribonacci numbers, signature (0, 1, 0), in reverse order, starting from A001590(-1), going backwards A001590(-2), A001590(-3), ... - Peter M. Chema, Dec 31 2016
LINKS
Benjamin Braun, W. K. Hough, Matching and Independence Complexes Related to Small Grids, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42.
FORMULA
G.f.: (1-x)/(1+x+x^2-x^3).
Recurrence: a(n) = a(n-3) - a(n-2) - a(n-1) for n > 2.
a(-1 - n) = - A001590(n). - Michael Somos, Jun 01 2014
EXAMPLE
G.f. = 1 - 2*x + x^2 + 2*x^3 - 5*x^4 + 4*x^5 + 3*x^6 - 12*x^7 + 13*x^8 + ...
MATHEMATICA
a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 - x) / (1 + x + x^2 - x^3), {x, 0, n}], SeriesCoefficient [ -x^2 (1 - x) / (1 - x - x^2 - x^3), {x, 0, -n}]]; (* Michael Somos, Jun 01 2014 *)
PROG
(PARI) Vec((1-x)/(1+x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) {a(n) = if( n>=0, polcoeff( (1 - x) / (1 + x + x^2 - x^3) + x * O(x^n), n), polcoeff( -x^2 * (1 - x) / (1 - x - x^2 - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jun 01 2014 */
CROSSREFS
First differences of A057597.
Cf. A001590.
Sequence in context: A375048 A209133 A078016 * A319200 A352479 A084600
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved