Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 21 2017 21:00:05
%S 1,-2,1,2,-5,4,3,-12,13,2,-27,38,-9,-56,103,-56,-103,262,-215,-150,
%T 627,-692,-85,1404,-2011,522,2893,-5426,3055,5264,-13745,11536,7473,
%U -32754,36817,3410,-72981,106388,-29997,-149372,285757,-166382,-268747,720886,-618521,-371112,1710519,-1957928
%N Expansion of (1-x)/(1 + x + x^2 - x^3).
%C The root of the denominator [1 + x + x^2 - x^3] is the tribonacci constant.
%C This is the negative of the tribonacci numbers, signature (0, 1, 0), in reverse order, starting from A001590(-1), going backwards A001590(-2), A001590(-3), ... - _Peter M. Chema_, Dec 31 2016
%H Benjamin Braun, W. K. Hough, <a href="https://arxiv.org/abs/1606.01204">Matching and Independence Complexes Related to Small Grids</a>, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
%H Wesley K. Hough, <a href="https://dx.doi.org/10.13023/ETD.2017.119">On Independence, Matching, and Homomorphism Complexes</a>, (2017), Theses and Dissertations--Mathematics, 42.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,1).
%F G.f.: (1-x)/(1+x+x^2-x^3).
%F Recurrence: a(n) = a(n-3) - a(n-2) - a(n-1) for n > 2.
%F a(-1 - n) = - A001590(n). - _Michael Somos_, Jun 01 2014
%e G.f. = 1 - 2*x + x^2 + 2*x^3 - 5*x^4 + 4*x^5 + 3*x^6 - 12*x^7 + 13*x^8 + ...
%t a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 - x) / (1 + x + x^2 - x^3), {x, 0, n}], SeriesCoefficient [ -x^2 (1 - x) / (1 - x - x^2 - x^3),{x, 0, -n}]]; (* _Michael Somos_, Jun 01 2014 *)
%o (PARI) Vec((1-x)/(1+x+x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%o (PARI) {a(n) = if( n>=0, polcoeff( (1 - x) / (1 + x + x^2 - x^3) + x * O(x^n), n), polcoeff( -x^2 * (1 - x) / (1 - x - x^2 - x^3) + x * O(x^-n), -n))}; /* _Michael Somos_, Jun 01 2014 */
%Y First differences of A057597.
%Y Cf. A001590.
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_, Nov 17 2002