login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078016
Expansion of (1-x)/(1-x+x^2+x^3).
4
1, 0, -1, -2, -1, 2, 5, 4, -3, -12, -13, 2, 27, 38, 9, -56, -103, -56, 103, 262, 215, -150, -627, -692, 85, 1404, 2011, 522, -2893, -5426, -3055, 5264, 13745, 11536, -7473, -32754, -36817, 3410, 72981, 106388, 29997, -149372, -285757, -166382, 268747, 720886, 618521, -371112, -1710519
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-x+x^2+x^3).
a(0)=1, a(1)=0, a(2)=-1, a(n) = a(n-1) - a(n-2) - a(n-3). - Harvey P. Dale, Nov 08 2011
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x+x^2+x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, -1, -1}, {1, 0, -1}, 50] (* Harvey P. Dale, Nov 08 2011 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x)/(1-x+x^2+x^3)) \\ G. C. Greubel, Jun 29 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+x^2+x^3) )); // G. C. Greubel, Jun 29 2019
(Sage) ((1-x)/(1-x+x^2+x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
(GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=a[n-1]-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 29 2019
CROSSREFS
Sequence in context: A136457 A375048 A209133 * A078046 A319200 A352479
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved