login
A074871
Start with n and repeatedly apply the map k -> T(k) = A053837(k) + A171765(k); a(n) is the number of steps (at least one) until a prime is reached, or 0 if no prime is ever reached.
2
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 1, 2, 2, 0, 1, 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 2, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0
OFFSET
1,17
COMMENTS
The first occurrence of k beginning with 0: 1, 2, 17, 59, 337, 779, 16999, 6888888, ..., . - Robert G. Wilson v, Oct 20 2010
EXAMPLE
T(2)=2. So in one step we reach a prime.
T(3)=3 and then in one step again we reach a prime.
T(4)=4 and we will never reach a prime.
T(11)=1+2=3 and again in one step we reach a prime.
T(17)=7+8=15 --> T(15)=5+6=11 and then in two steps we reach a prime.
T(13)=3+4=7 and then 1 step......
T(14)=4+5=9 --> T(9)=9 --> T(9)=9........ and we will never reach a prime.
MATHEMATICA
g[n_] := Block[{id = IntegerDigits@ n}, Mod[ Plus @@ id, 10] + If[n < 10, 0, Times @@ id]]; f[n_] := Block[{lst = Rest@ NestWhileList[g, n, UnsameQ, All]}, lsp = PrimeQ@ lst; If[ Last@ Union@ lsp == False, 0, Position[lsp, True, 1, 1][[1, 1]]]]; Array[f, 105] (* Robert G. Wilson v, Oct 20 2010 *)
CROSSREFS
Cf. A053837, A171765. See A171772 for another version.
Sequence in context: A337086 A113313 A342708 * A182641 A337939 A319020
KEYWORD
easy,nonn,base
AUTHOR
Felice Russo, Sep 12 2002, Oct 11 2010
EXTENSIONS
Edited by N. J. A. Sloane, Oct 12 2010
More terms from Robert G. Wilson v, Oct 20 2010
STATUS
approved