login
A074874
Numbers n such that phi(n + phi(n)) = sigma(n).
2
1, 3, 5, 11, 23, 55, 87, 123, 383, 501, 957, 1015, 3565, 3777, 5667, 6141, 9069, 11033, 13827, 27347, 35119, 44693, 55645, 91915, 137037, 156919, 180251, 233935, 261989, 269395, 294679, 315605, 335995, 361645, 380103, 389809, 410201, 428399, 443267
OFFSET
1,2
LINKS
EXAMPLE
sigma(23) = 24 = phi(23 + 22) = phi(23 + phi(23)), so 23 is a term of the sequence.
phi(87 + phi(87)) = phi(87 + 56) = 120 = sigma(87), so 87 is a member of the sequence.
MATHEMATICA
Select[Range[10^5], EulerPhi[ # + EulerPhi[ # ]] == DivisorSigma[1, # ] &]
CROSSREFS
Sequence in context: A094810 A139376 A074892 * A051439 A214873 A330951
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Sep 12 2002
STATUS
approved