login
A074869
Numbers n such that sigma(sigma(n) - phi(n)) = phi(n).
0
707, 7843, 143591, 274211, 598787, 737807, 861749, 928421, 1515521, 1682203, 1936099, 2223143, 2709473, 2908373, 2985641, 3669919, 3689279, 3825419, 3848851, 4154297, 4429159, 5321743, 5654623, 5678131, 6548899, 8916427, 11403743, 11474267, 12191803, 13340869
OFFSET
1,1
EXAMPLE
sigma(sigma(707)-phi(707)) = sigma(816-600) = sigma(216) = 600 = phi(707), so 707 is a term of the sequence.
MATHEMATICA
Select[Range[2, 10^6], DivisorSigma[1, DivisorSigma[1, # ] - EulerPhi[ # ]] == EulerPhi[ # ] &]
CROSSREFS
Sequence in context: A183795 A335092 A252692 * A212476 A332170 A188098
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Sep 12 2002
EXTENSIONS
a(9)-a(30) from Donovan Johnson, Jan 19 2012
STATUS
approved