login
A069273
12-almost primes (generalization of semiprimes).
32
4096, 6144, 9216, 10240, 13824, 14336, 15360, 20736, 21504, 22528, 23040, 25600, 26624, 31104, 32256, 33792, 34560, 34816, 35840, 38400, 38912, 39936, 46656, 47104, 48384, 50176, 50688, 51840, 52224, 53760, 56320, 57600, 58368, 59392
OFFSET
1,1
COMMENTS
Product of 12 not necessarily distinct primes.
Divisible by exactly 12 prime powers (not including 1).
Any 12-almost prime can be represented in at least one way as a product of two 6-almost primes A046306, three 4-almost primes A014613, four 3-almost primes A014612, or six semiprimes A001358. - Jonathan Vos Post, Dec 11 2004
LINKS
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
Product p_i^e_i with Sum e_i = 12.
MATHEMATICA
Select[Range[20000], Plus @@ Last /@ FactorInteger[ # ] == 12 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Select[Range[60000], PrimeOmega[#]==12&] (* Harvey P. Dale, May 01 2019 *)
PROG
(PARI) k=12; start=2^k; finish=70000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A069273(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 12)))
return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024
CROSSREFS
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), this sequence (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Sequence in context: A223694 A186489 A221261 * A043424 A138174 A258735
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Mar 13 2002
STATUS
approved