login
A101605
a(n) = 1 if n is a product of exactly 3 (not necessarily distinct) primes, otherwise 0.
27
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
OFFSET
1,1
FORMULA
a(n) = 1 if n has exactly three prime factors (not necessarily distinct), else a(n) = 0. a(n) = 1 if n is an element of A014612, else a(n) = 0.
a(n) = floor(Omega(n)/3) * floor(3/Omega(n)). - Wesley Ivan Hurt, Jan 10 2013
EXAMPLE
a(28) = 1 because 28 = 2 * 2 * 7 is the product of exactly 3 primes, counted with multiplicity.
MAPLE
A101605 := proc(n)
if numtheory[bigomega](n) = 3 then
1;
else
0;
end if;
end proc: # R. J. Mathar, Mar 13 2015
MATHEMATICA
Table[Boole[PrimeOmega[n] == 3], {n, 100}] (* Jean-François Alcover, Mar 23 2020 *)
PROG
(PARI) is(n)=bigomega(n)==3 \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Cf. A010051, A064911, (char funct. of) A014612, A101637, A123074.
Sequence in context: A025460 A374222 A169673 * A358753 A175854 A353678
KEYWORD
easy,nonn,changed
AUTHOR
Jonathan Vos Post, Dec 09 2004
EXTENSIONS
Description clarified by Antti Karttunen, Jul 23 2017
STATUS
approved