login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067279
Factorial expansion of zeta(2) : zeta(2) = Sum_{n>=1} a(n)/n!.
3
1, 1, 0, 3, 2, 2, 2, 3, 6, 6, 8, 1, 11, 12, 7, 6, 13, 7, 3, 2, 2, 2, 9, 20, 9, 16, 11, 0, 12, 13, 19, 25, 26, 31, 18, 24, 21, 32, 12, 34, 22, 24, 13, 14, 41, 20, 34, 29, 22, 40, 50, 4, 33, 50, 39, 8, 15, 24, 14, 59, 40, 3, 9, 29, 27, 14, 18, 39, 59, 44, 28, 30, 35, 5, 64, 20, 18
OFFSET
1,4
LINKS
FORMULA
a(n) = floor(n!*zeta(2)) - n*floor((n-1)!*zeta(2)), for n>=2.
MATHEMATICA
With[{b = Zeta[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
PROG
(PARI) default(realprecision, 250); b = zeta(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
(Magma) SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L, 2))] cat [Floor(Factorial(n)*Evaluate(L, 2)) - n*Floor(Factorial((n-1))*Evaluate(L, 2)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
(Sage)
def A067279(n):
if (n==1): return floor(zeta(2))
else: return expand(floor(factorial(n)*zeta(2)) - n*floor(factorial(n-1)*zeta(2)))
[A067279(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018
CROSSREFS
Cf. A067277 (zeta(3)), A068447 (zeta(4)), A068454 (zeta(5)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).
Sequence in context: A141070 A283469 A163751 * A106267 A096101 A104890
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
EXTENSIONS
a(1) corrected by G. C. Greubel, Nov 26 2018
STATUS
approved