login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068447
Factorial expansion: zeta(4) = Pi^4/90 = Sum_{n>0} a(n)/n!.
6
1, 0, 0, 1, 4, 5, 1, 7, 2, 4, 6, 0, 8, 8, 14, 14, 14, 12, 0, 14, 2, 5, 15, 9, 11, 25, 12, 9, 1, 21, 29, 29, 20, 22, 29, 21, 27, 10, 4, 13, 20, 20, 30, 11, 7, 18, 18, 15, 39, 8, 47, 41, 51, 36, 28, 50, 35, 32, 6, 38, 23, 41, 45, 49, 36, 11, 31, 60, 5, 50, 42, 61, 1, 61, 68, 43, 76, 41
OFFSET
1,5
MATHEMATICA
Table[If[n == 1, Floor[Pi^4/90], Floor[n!*(Pi^4/90)] - n*Floor[(n- 1)!*(Pi^4/90)]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
PROG
(PARI) for(n=1, 30, print1(if(n==1, floor(Pi^4/90), floor(n!*Pi^4/90) - n*floor((n-1)!*Pi^4/90)), ", ")) \\ G. C. Greubel, Mar 21 2018
(PARI) A068447_vec(N=90, c=zeta(precision(4., N*log(N/2.4)\/2.3)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 28 2018
(Magma) R:= RealField(200); [Floor(Pi(R)^4/90)] cat [Floor(Factorial(n)* Pi(R)^4/90) - n*Floor(Factorial((n-1))*Pi(R)^4/90) : n in [2..78]]; // G. C. Greubel, Mar 21 2018
CROSSREFS
Cf. A013662 (decimal expansion).
Sequence in context: A272638 A365464 A299630 * A375822 A237109 A199384
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved