login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061800
a(n) = n + (-1)^(n mod 3).
3
1, 0, 3, 4, 3, 6, 7, 6, 9, 10, 9, 12, 13, 12, 15, 16, 15, 18, 19, 18, 21, 22, 21, 24, 25, 24, 27, 28, 27, 30, 31, 30, 33, 34, 33, 36, 37, 36, 39, 40, 39, 42, 43, 42, 45, 46, 45, 48, 49, 48, 51, 52, 51, 54, 55, 54, 57, 58, 57, 60, 61, 60, 63, 64, 63, 66, 67, 66, 69, 70, 69, 72
OFFSET
0,3
COMMENTS
The arithmetic function v_3(n,1) as defined in A289187. - Robert Price, Aug 22 2017; corrected by Ridouane Oudra, Dec 28 2024
FORMULA
O.g.f.: (1-x+3*x^2)/((-1+x)^2*(1+x+x^2)). - R. J. Mathar, Apr 02 2008
a(n) = (3*n + 1 - 4*cos(2*(n+2)*Pi/3))/3. - Wesley Ivan Hurt, Sep 26 2017
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3. - Wesley Ivan Hurt, Oct 07 2017
a(n) = n + 2 - gcd(n+2,3). - Ridouane Oudra, Dec 28 2024
Sum_{n>=2} (-1)^n/a(n) = Pi/(3*sqrt(3)) + log(2) - 1. - Amiram Eldar, Jan 15 2025
EXAMPLE
a(4) = 4 + (-1)^1 = 3.
MAPLE
A061800:=n->n+(-1)^(n mod 3): seq(A061800(n), n=0..150); # Wesley Ivan Hurt, Oct 07 2017
MATHEMATICA
Table[n + (-1)^Mod[n, 3], {n, 0, 80}] (* Vincenzo Librandi, Aug 23 2017 *)
PROG
(PARI) a(n) = { n + (-1)^(n%3) } \\ Harry J. Smith, Jul 28 2009
(Magma) [n+(-1)^(n mod 3): n in [0..80]]; // Vincenzo Librandi, Aug 23 2017
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Olivier Gérard, Jun 22 2001
STATUS
approved