login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061803
Sum of n-th row of triangle of 4th powers: 1; 1 16 1; 1 16 81 16 1; 1 16 81 256 81 16 1; ... (cf. A133824).
2
1, 18, 115, 452, 1333, 3254, 6951, 13448, 24105, 40666, 65307, 100684, 149981, 216958, 305999, 422160, 571217, 759714, 995011, 1285332, 1639813, 2068550, 2582647, 3194264, 3916665, 4764266, 5752683, 6898780, 8220717, 9737998
OFFSET
1,2
FORMULA
a(n) = n*(6*n^4 + 10*n^2 - 1)/15. - Dean Hickerson, Jun 06 2001
G.f.: x*(1+x)^2*(1+10*x+x^2)/(1-x)^6. - Colin Barker, Apr 20 2012
E.g.f.: exp(x)*x*(15 + 120*x + 160*x^2 + 60*x^3 + 6*x^4)/15. - Stefano Spezia, Dec 08 2024
EXAMPLE
a(3) = 115 = 1 + 16 + 81 + 16 + 1
MATHEMATICA
Table[Total[2Range[n-1]^4]+n^4, {n, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 18, 115, 452, 1333, 3254}, 30] (* Harvey P. Dale, Aug 23 2016 *)
PROG
(PARI) a(n) = { n*(6*n^4 + 10*n^2 - 1)/15 } \\ Harry J. Smith, Jul 28 2009
CROSSREFS
Cf. A133824.
Sequence in context: A125328 A126486 A251937 * A207103 A101089 A022678
KEYWORD
nonn,easy,changed
AUTHOR
Amarnath Murthy, May 28 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, May 28 2001
STATUS
approved