login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060229
Smaller member of a twin prime pair whose mean is a multiple of A002110(3)=30.
18
29, 59, 149, 179, 239, 269, 419, 569, 599, 659, 809, 1019, 1049, 1229, 1289, 1319, 1619, 1949, 2129, 2309, 2339, 2549, 2729, 2789, 2969, 2999, 3119, 3299, 3329, 3359, 3389, 3539, 3929, 4019, 4049, 4229, 4259, 4649, 4799, 5009, 5099, 5279, 5519, 5639
OFFSET
1,1
COMMENTS
Equivalently, smaller of twin prime pair with primes in different decades.
Primes p such that p and p+2 are prime factors of Fibonacci(p-1) and Fibonacci(p+1) respectively. - Michel Lagneau, Jul 13 2016
The union of this sequence and A282326 gives A132243. - Martin Renner, Feb 11 2017
The union of {3,5}, A282321, A282323 and this sequence gives A001359. - Martin Renner, Feb 11 2017
The union of {3,5,7}, A282321, A282322, A282323, A282324, this sequence and A282326 gives A001097. - Martin Renner, Feb 11 2017
Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - Muniru A Asiru, Jan 29 2018
LINKS
EXAMPLE
For the pair {149,151} (149 + 151)/2 = 5*30.
MAPLE
isA060229 := proc(n)
if modp(n+1, 30) =0 and isprime(n) and isprime(n+2) then
true;
else
false;
end if;
end proc:
A060229 := proc(n)
option remember;
if n =1 then
29;
else
for a from procname(n-1)+2 by 2 do
if isA060229(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A060229(n), n=1..80) ; # R. J. Mathar, Feb 19 2017
MATHEMATICA
Select[Prime@ Range[10^3], PrimeQ[# + 2] && Mod[# + 1, 30] == 0 &] (* Michael De Vlieger, Jul 14 2016 *)
PROG
(PARI) isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 30); \\ Michel Marcus, Dec 11 2013
(Magma) [p: p in PrimesUpTo(7000) | IsPrime(p+2) and p mod 30 eq 29 ]; // Vincenzo Librandi, Feb 13 2017
(GAP) Filtered(List([0..200], k -> 30*k-1), n -> IsPrime(n) and IsPrime(n+2)); # Muniru A Asiru, Feb 02 2018
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 21 2001
EXTENSIONS
Minor edits by Ray Chandler, Apr 02 2009
STATUS
approved