login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smaller member of a twin prime pair whose mean is a multiple of A002110(3)=30.
18

%I #36 Sep 08 2022 08:45:03

%S 29,59,149,179,239,269,419,569,599,659,809,1019,1049,1229,1289,1319,

%T 1619,1949,2129,2309,2339,2549,2729,2789,2969,2999,3119,3299,3329,

%U 3359,3389,3539,3929,4019,4049,4229,4259,4649,4799,5009,5099,5279,5519,5639

%N Smaller member of a twin prime pair whose mean is a multiple of A002110(3)=30.

%C Equivalently, smaller of twin prime pair with primes in different decades.

%C Primes p such that p and p+2 are prime factors of Fibonacci(p-1) and Fibonacci(p+1) respectively. - _Michel Lagneau_, Jul 13 2016

%C The union of this sequence and A282326 gives A132243. - _Martin Renner_, Feb 11 2017

%C The union of {3,5}, A282321, A282323 and this sequence gives A001359. - _Martin Renner_, Feb 11 2017

%C The union of {3,5,7}, A282321, A282322, A282323, A282324, this sequence and A282326 gives A001097. - _Martin Renner_, Feb 11 2017

%C Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - _Muniru A Asiru_, Jan 29 2018

%H Muniru A Asiru, <a href="/A060229/b060229.txt">Table of n, a(n) for n = 1..1000</a>

%e For the pair {149,151} (149 + 151)/2 = 5*30.

%p isA060229 := proc(n)

%p if modp(n+1,30) =0 and isprime(n) and isprime(n+2) then

%p true;

%p else

%p false;

%p end if;

%p end proc:

%p A060229 := proc(n)

%p option remember;

%p if n =1 then

%p 29;

%p else

%p for a from procname(n-1)+2 by 2 do

%p if isA060229(a) then

%p return a;

%p end if;

%p end do:

%p end if;

%p end proc:

%p seq(A060229(n),n=1..80) ; # _R. J. Mathar_, Feb 19 2017

%t Select[Prime@ Range[10^3], PrimeQ[# + 2] && Mod[# + 1, 30] == 0 &] (* _Michael De Vlieger_, Jul 14 2016 *)

%o (PARI) isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 30); \\ _Michel Marcus_, Dec 11 2013

%o (Magma) [p: p in PrimesUpTo(7000) | IsPrime(p+2) and p mod 30 eq 29 ]; // _Vincenzo Librandi_, Feb 13 2017

%o (GAP) Filtered(List([0..200], k -> 30*k-1), n -> IsPrime(n) and IsPrime(n+2)); # _Muniru A Asiru_, Feb 02 2018

%Y Cf. A001359, A002110, A060230, A060231, A158277, A158861.

%Y Subset of A001097, A001359, A132236, A132243 and A132247.

%K nonn

%O 1,1

%A _Labos Elemer_, Mar 21 2001

%E Minor edits by _Ray Chandler_, Apr 02 2009